Dataset statistics
| Number of variables | 5 |
|---|---|
| Number of observations | 77096 |
| Missing cells | 49053 |
| Missing cells (%) | 12.7% |
| Duplicate rows | 8966 |
| Duplicate rows (%) | 11.6% |
| Total size in memory | 2.9 MiB |
| Average record size in memory | 40.0 B |
Variable types
| Numeric | 2 |
|---|---|
| Categorical | 2 |
| Boolean | 1 |
| Dataset has 8966 (11.6%) duplicate rows | Duplicates |
company_rating has a high cardinality: 70 distinct values | High cardinality |
company_location has a high cardinality: 181 distinct values | High cardinality |
company_rating has 29909 (38.8%) missing values | Missing |
company_location has 19130 (24.8%) missing values | Missing |
Reproduction
| Analysis started | 2022-11-24 10:51:06.732214 |
|---|---|
| Analysis finished | 2022-11-24 10:51:12.799680 |
| Duration | 6.07 seconds |
| Software version | pandas-profiling vv3.5.0 |
| Download configuration | config.json |
id
Real number (ℝ)
| Distinct | 50098 |
|---|---|
| Distinct (%) | 65.0% |
| Missing | 0 |
| Missing (%) | 0.0% |
| Infinite | 0 |
| Infinite (%) | 0.0% |
| Mean | 25155.386 |
| Minimum | 1 |
|---|---|
| Maximum | 50098 |
| Zeros | 0 |
| Zeros (%) | 0.0% |
| Negative | 0 |
| Negative (%) | 0.0% |
| Memory size | 602.4 KiB |
Quantile statistics
| Minimum | 1 |
|---|---|
| 5-th percentile | 2704.75 |
| Q1 | 12935.75 |
| median | 25253.5 |
| Q3 | 37410.25 |
| 95-th percentile | 47520.25 |
| Maximum | 50098 |
| Range | 50097 |
| Interquartile range (IQR) | 24474.5 |
Descriptive statistics
| Standard deviation | 14300.991 |
|---|---|
| Coefficient of variation (CV) | 0.5685061 |
| Kurtosis | -1.1684667 |
| Mean | 25155.386 |
| Median Absolute Deviation (MAD) | 12241.5 |
| Skewness | -0.01137149 |
| Sum | 1.9393797 × 109 |
| Variance | 2.0451833 × 108 |
| Monotonicity | Not monotonic |
Histogram with fixed size bins (bins=50)
| Value | Count | Frequency (%) |
| 29647 | 1086 | 1.4% |
| 45111 | 297 | 0.4% |
| 28828 | 184 | 0.2% |
| 32203 | 176 | 0.2% |
| 20334 | 167 | 0.2% |
| 18077 | 125 | 0.2% |
| 4745 | 114 | 0.1% |
| 10711 | 108 | 0.1% |
| 22721 | 106 | 0.1% |
| 19019 | 102 | 0.1% |
| Other values (50088) | 74631 |
| Value | Count | Frequency (%) |
| 1 | 2 | |
| 2 | 1 | |
| 3 | 1 | |
| 4 | 1 | |
| 5 | 1 | |
| 6 | 2 | |
| 7 | 1 | |
| 8 | 1 | |
| 9 | 2 | |
| 10 | 1 |
| Value | Count | Frequency (%) |
| 50098 | 2 | |
| 50097 | 1 | |
| 50096 | 1 | |
| 50095 | 1 | |
| 50094 | 1 | |
| 50093 | 1 | |
| 50092 | 1 | |
| 50091 | 1 | |
| 50090 | 1 | |
| 50089 | 2 |
| Distinct | 70 |
|---|---|
| Distinct (%) | 0.1% |
| Missing | 29909 |
| Missing (%) | 38.8% |
| Memory size | 602.4 KiB |
| 100% | |
|---|---|
| 90% | 1698 |
| 99% | 956 |
| 0% | 920 |
| 80% | 862 |
| Other values (65) |
Length
| Max length | 4 |
|---|---|
| Median length | 4 |
| Mean length | 3.7053638 |
| Min length | 2 |
Characters and Unicode
| Total characters | 174845 |
|---|---|
| Distinct characters | 11 |
| Distinct categories | 2 ? |
| Distinct scripts | 1 ? |
| Distinct blocks | 1 ? |
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.
Unique
| Unique | 5 ? |
|---|---|
| Unique (%) | < 0.1% |
Sample
| 1st row | 100% |
|---|---|
| 2nd row | 67% |
| 3rd row | 67% |
| 4th row | 91% |
| 5th row | 100% |
Common Values
| Value | Count | Frequency (%) |
| 100% | 34204 | |
| 90% | 1698 | 2.2% |
| 99% | 956 | 1.2% |
| 0% | 920 | 1.2% |
| 80% | 862 | 1.1% |
| 98% | 726 | 0.9% |
| 50% | 702 | 0.9% |
| 97% | 675 | 0.9% |
| 94% | 538 | 0.7% |
| 95% | 458 | 0.6% |
| Other values (60) | 5448 | 7.1% |
| (Missing) | 29909 |
Length
Histogram of lengths of the category
| Value | Count | Frequency (%) |
| 100 | 34204 | |
| 90 | 1698 | 3.6% |
| 99 | 956 | 2.0% |
| 0 | 920 | 1.9% |
| 80 | 862 | 1.8% |
| 98 | 726 | 1.5% |
| 50 | 702 | 1.5% |
| 97 | 675 | 1.4% |
| 94 | 538 | 1.1% |
| 95 | 458 | 1.0% |
| Other values (60) | 5448 | 11.5% |
Most occurring characters
| Value | Count | Frequency (%) |
| 0 | 73359 | |
| % | 47187 | |
| 1 | 34583 | |
| 9 | 7824 | 4.5% |
| 8 | 3425 | 2.0% |
| 7 | 2471 | 1.4% |
| 5 | 1898 | 1.1% |
| 6 | 1601 | 0.9% |
| 3 | 1177 | 0.7% |
| 4 | 832 | 0.5% |
Most occurring categories
| Value | Count | Frequency (%) |
| Decimal Number | 127658 | |
| Other Punctuation | 47187 | 27.0% |
Most frequent character per category
Decimal Number
| Value | Count | Frequency (%) |
| 0 | 73359 | |
| 1 | 34583 | |
| 9 | 7824 | 6.1% |
| 8 | 3425 | 2.7% |
| 7 | 2471 | 1.9% |
| 5 | 1898 | 1.5% |
| 6 | 1601 | 1.3% |
| 3 | 1177 | 0.9% |
| 4 | 832 | 0.7% |
| 2 | 488 | 0.4% |
Other Punctuation
| Value | Count | Frequency (%) |
| % | 47187 |
Most occurring scripts
| Value | Count | Frequency (%) |
| Common | 174845 |
Most frequent character per script
Common
| Value | Count | Frequency (%) |
| 0 | 73359 | |
| % | 47187 | |
| 1 | 34583 | |
| 9 | 7824 | 4.5% |
| 8 | 3425 | 2.0% |
| 7 | 2471 | 1.4% |
| 5 | 1898 | 1.1% |
| 6 | 1601 | 0.9% |
| 3 | 1177 | 0.7% |
| 4 | 832 | 0.5% |
Most occurring blocks
| Value | Count | Frequency (%) |
| ASCII | 174845 |
Most frequent character per block
ASCII
| Value | Count | Frequency (%) |
| 0 | 73359 | |
| % | 47187 | |
| 1 | 34583 | |
| 9 | 7824 | 4.5% |
| 8 | 3425 | 2.0% |
| 7 | 2471 | 1.4% |
| 5 | 1898 | 1.1% |
| 6 | 1601 | 0.9% |
| 3 | 1177 | 0.7% |
| 4 | 832 | 0.5% |
| Distinct | 181 |
|---|---|
| Distinct (%) | 0.3% |
| Missing | 19130 |
| Missing (%) | 24.8% |
| Memory size | 602.4 KiB |
| Russian Federation | 1979 |
|---|---|
| Niue | 1863 |
| Uzbekistan | 1711 |
| Guinea | 1703 |
| Isle of Man | 1633 |
| Other values (176) |
Length
| Max length | 51 |
|---|---|
| Median length | 29 |
| Mean length | 9.5813408 |
| Min length | 4 |
Characters and Unicode
| Total characters | 555392 |
|---|---|
| Distinct characters | 59 |
| Distinct categories | 8 ? |
| Distinct scripts | 2 ? |
| Distinct blocks | 1 ? |
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.
Unique
| Unique | 21 ? |
|---|---|
| Unique (%) | < 0.1% |
Sample
| 1st row | Niue |
|---|---|
| 2nd row | Anguilla |
| 3rd row | Russian Federation |
| 4th row | Barbados |
| 5th row | Sao Tome and Principe |
Common Values
| Value | Count | Frequency (%) |
| Russian Federation | 1979 | 2.6% |
| Niue | 1863 | 2.4% |
| Uzbekistan | 1711 | 2.2% |
| Guinea | 1703 | 2.2% |
| Isle of Man | 1633 | 2.1% |
| Sao Tome and Principe | 1624 | 2.1% |
| Nicaragua | 1490 | 1.9% |
| Tonga | 1442 | 1.9% |
| Peru | 1300 | 1.7% |
| Marshall Islands | 1293 | 1.7% |
| Other values (171) | 41928 | |
| (Missing) | 19130 |
Length
Histogram of lengths of the category
| Value | Count | Frequency (%) |
| islands | 3185 | 3.8% |
| and | 3018 | 3.6% |
| guinea | 2001 | 2.4% |
| russian | 1979 | 2.4% |
| federation | 1979 | 2.4% |
| niue | 1863 | 2.2% |
| uzbekistan | 1711 | 2.1% |
| of | 1658 | 2.0% |
| isle | 1633 | 2.0% |
| man | 1633 | 2.0% |
| Other values (229) | 62471 |
Most occurring characters
| Value | Count | Frequency (%) |
| a | 78762 | |
| n | 49414 | 8.9% |
| i | 47479 | 8.5% |
| e | 43540 | 7.8% |
| o | 28191 | 5.1% |
| r | 28103 | 5.1% |
| s | 27841 | 5.0% |
| 25165 | 4.5% | |
| l | 20596 | 3.7% |
| u | 19622 | 3.5% |
| Other values (49) | 186679 |
Most occurring categories
| Value | Count | Frequency (%) |
| Lowercase Letter | 448825 | |
| Uppercase Letter | 77999 | 14.0% |
| Space Separator | 25165 | 4.5% |
| Close Punctuation | 1497 | 0.3% |
| Open Punctuation | 1497 | 0.3% |
| Other Punctuation | 360 | 0.1% |
| Decimal Number | 48 | < 0.1% |
| Dash Punctuation | 1 | < 0.1% |
Most frequent character per category
Lowercase Letter
| Value | Count | Frequency (%) |
| a | 78762 | |
| n | 49414 | |
| i | 47479 | |
| e | 43540 | |
| o | 28191 | 6.3% |
| r | 28103 | 6.3% |
| s | 27841 | 6.2% |
| l | 20596 | 4.6% |
| u | 19622 | 4.4% |
| d | 18661 | 4.2% |
| Other values (16) | 86616 |
Uppercase Letter
| Value | Count | Frequency (%) |
| M | 9229 | |
| I | 6334 | 8.1% |
| S | 5391 | 6.9% |
| G | 5277 | 6.8% |
| N | 5275 | 6.8% |
| T | 5266 | 6.8% |
| C | 4981 | 6.4% |
| F | 4942 | 6.3% |
| P | 4924 | 6.3% |
| R | 4723 | 6.1% |
| Other values (15) | 21657 |
Other Punctuation
| Value | Count | Frequency (%) |
| & | 357 | |
| ' | 3 | 0.8% |
Decimal Number
| Value | Count | Frequency (%) |
| 6 | 24 | |
| 0 | 24 |
Space Separator
| Value | Count | Frequency (%) |
| 25165 |
Close Punctuation
| Value | Count | Frequency (%) |
| ) | 1497 |
Open Punctuation
| Value | Count | Frequency (%) |
| ( | 1497 |
Dash Punctuation
| Value | Count | Frequency (%) |
| - | 1 |
Most occurring scripts
| Value | Count | Frequency (%) |
| Latin | 526824 | |
| Common | 28568 | 5.1% |
Most frequent character per script
Latin
| Value | Count | Frequency (%) |
| a | 78762 | |
| n | 49414 | 9.4% |
| i | 47479 | 9.0% |
| e | 43540 | 8.3% |
| o | 28191 | 5.4% |
| r | 28103 | 5.3% |
| s | 27841 | 5.3% |
| l | 20596 | 3.9% |
| u | 19622 | 3.7% |
| d | 18661 | 3.5% |
| Other values (41) | 164615 |
Common
| Value | Count | Frequency (%) |
| 25165 | ||
| ) | 1497 | 5.2% |
| ( | 1497 | 5.2% |
| & | 357 | 1.2% |
| 6 | 24 | 0.1% |
| 0 | 24 | 0.1% |
| ' | 3 | < 0.1% |
| - | 1 | < 0.1% |
Most occurring blocks
| Value | Count | Frequency (%) |
| ASCII | 555392 |
Most frequent character per block
ASCII
| Value | Count | Frequency (%) |
| a | 78762 | |
| n | 49414 | 8.9% |
| i | 47479 | 8.5% |
| e | 43540 | 7.8% |
| o | 28191 | 5.1% |
| r | 28103 | 5.1% |
| s | 27841 | 5.0% |
| 25165 | 4.5% | |
| l | 20596 | 3.7% |
| u | 19622 | 3.5% |
| Other values (49) | 186679 |
total_fleet_count
Real number (ℝ)
| Distinct | 90 |
|---|---|
| Distinct (%) | 0.1% |
| Missing | 7 |
| Missing (%) | < 0.1% |
| Infinite | 0 |
| Infinite (%) | 0.0% |
| Mean | 30.473699 |
| Minimum | 1 |
|---|---|
| Maximum | 1484 |
| Zeros | 0 |
| Zeros (%) | 0.0% |
| Negative | 0 |
| Negative (%) | 0.0% |
| Memory size | 602.4 KiB |
Quantile statistics
| Minimum | 1 |
|---|---|
| 5-th percentile | 1 |
| Q1 | 1 |
| median | 1 |
| Q3 | 4 |
| 95-th percentile | 60 |
| Maximum | 1484 |
| Range | 1483 |
| Interquartile range (IQR) | 3 |
Descriptive statistics
| Standard deviation | 165.54827 |
|---|---|
| Coefficient of variation (CV) | 5.4324966 |
| Kurtosis | 54.721438 |
| Mean | 30.473699 |
| Median Absolute Deviation (MAD) | 0 |
| Skewness | 7.4147427 |
| Sum | 2349187 |
| Variance | 27406.229 |
| Monotonicity | Not monotonic |
Histogram with fixed size bins (bins=50)
| Value | Count | Frequency (%) |
| 1 | 38555 | |
| 2 | 11827 | 15.3% |
| 3 | 4915 | 6.4% |
| 4 | 2852 | 3.7% |
| 5 | 1648 | 2.1% |
| 6 | 1250 | 1.6% |
| 1305 | 1086 | 1.4% |
| 7 | 984 | 1.3% |
| 8 | 867 | 1.1% |
| 9 | 791 | 1.0% |
| Other values (80) | 12314 | 16.0% |
| Value | Count | Frequency (%) |
| 1 | 38555 | |
| 2 | 11827 | 15.3% |
| 3 | 4915 | 6.4% |
| 4 | 2852 | 3.7% |
| 5 | 1648 | 2.1% |
| 6 | 1250 | 1.6% |
| 7 | 984 | 1.3% |
| 8 | 867 | 1.1% |
| 9 | 791 | 1.0% |
| 10 | 642 | 0.8% |
| Value | Count | Frequency (%) |
| 1484 | 102 | 0.1% |
| 1305 | 1086 | |
| 1105 | 10 | < 0.1% |
| 781 | 1 | < 0.1% |
| 420 | 297 | 0.4% |
| 419 | 1 | < 0.1% |
| 198 | 184 | 0.2% |
| 185 | 8 | < 0.1% |
| 176 | 176 | 0.2% |
| 172 | 19 | < 0.1% |
iata_approved
Boolean
| Distinct | 2 |
|---|---|
| Distinct (%) | < 0.1% |
| Missing | 7 |
| Missing (%) | < 0.1% |
| Memory size | 150.7 KiB |
| False | |
|---|---|
| True | |
| (Missing) | 7 |
| Value | Count | Frequency (%) |
| False | 47482 | |
| True | 29607 | |
| (Missing) | 7 | < 0.1% |
Auto
The auto setting is an interpretable pairwise column metric of the following mapping:- Variable_type-Variable_type : Method, Range
- Categorical-Categorical : Cramer's V, [0,1]
- Numerical-Categorical : Cramer's V, [0,1] (using a discretized numerical column)
- Numerical-Numerical : Spearman's ρ, [-1,1]
This configuration uses the recommended metric for each pair of columns.
Spearman's ρ
The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
Pearson's r
The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
Kendall's τ
Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
Cramér's V (φc)
Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.Phik (φk)
Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here. A simple visualization of nullity by column.
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
| id | company_rating | company_location | total_fleet_count | iata_approved | |
|---|---|---|---|---|---|
| 0 | 35029 | 100% | Niue | 4.0 | f |
| 1 | 30292 | 67% | Anguilla | 6.0 | f |
| 2 | 19032 | 67% | Russian Federation | 4.0 | f |
| 3 | 8238 | 91% | Barbados | 15.0 | t |
| 4 | 30342 | NaN | Sao Tome and Principe | 2.0 | t |
| 5 | 32413 | 100% | Faroe Islands | 1.0 | f |
| 6 | 35620 | 90% | Micronesia | 3.0 | f |
| 7 | 23820 | NaN | Rwanda | 1.0 | t |
| 8 | 46528 | 100% | Uzbekistan | 3.0 | t |
| 9 | 11875 | 100% | Micronesia | 2.0 | t |
| id | company_rating | company_location | total_fleet_count | iata_approved | |
|---|---|---|---|---|---|
| 77086 | 15249 | NaN | Marshall Islands | 1.0 | f |
| 77087 | 44431 | NaN | NaN | 1.0 | f |
| 77088 | 25724 | NaN | NaN | 1.0 | f |
| 77089 | 32743 | NaN | Kiribati | 2.0 | f |
| 77090 | 19010 | NaN | Philippines | 2.0 | f |
| 77091 | 6654 | 100% | Tonga | 3.0 | f |
| 77092 | 8000 | NaN | Chile | 2.0 | t |
| 77093 | 14296 | NaN | Netherlands | 4.0 | f |
| 77094 | 27363 | 80% | NaN | 3.0 | t |
| 77095 | 12542 | 98% | Mauritania | 19.0 | t |
Most frequently occurring
| id | company_rating | company_location | total_fleet_count | iata_approved | # duplicates | |
|---|---|---|---|---|---|---|
| 5293 | 29647 | 100% | Peru | 1305.0 | f | 1086 |
| 8081 | 45111 | 100% | Sao Tome and Principe | 420.0 | f | 297 |
| 5148 | 28828 | 100% | Isle of Man | 198.0 | t | 184 |
| 5737 | 32203 | 100% | Barbados | 176.0 | f | 176 |
| 3644 | 20334 | 99% | Niger | 171.0 | t | 167 |
| 3222 | 18077 | 100% | Sao Tome and Principe | 139.0 | f | 125 |
| 838 | 4745 | 100% | Croatia | 119.0 | f | 114 |
| 1888 | 10711 | 93% | Uganda | 108.0 | t | 108 |
| 4070 | 22721 | 100% | Ecuador | 109.0 | f | 106 |
| 3400 | 19019 | 97% | Nicaragua | 1484.0 | f | 102 |